Organic Chemistry Prep Workshop – Day 1 You Try Solutions

You Try 1-1

For each species below, determine the number of protons, neutrons, and electrons.

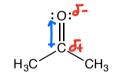
- ¹⁵N **7** p⁺ **7** e⁻ **8** I
- $^{32}S^{2-}$ 16 p^{+} 18 e^{-} 16 n°
- 21 Ne $^{-1}$ D $^{+}$ $^{-1}$ D $^{-1}$ D $^{-1}$

You Try 1-2

Write the abbreviated electron configuration for each of the following:

Na [Ne] 351

S [Ne]3523p4


Na[†] [Ne]

52- [Ne] 3523p6 = [Ar]

C [He] 252 2p2

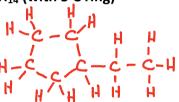
You Try 1-3

For each polar covalent bond below, write in " δ -, δ +" notation and draw in the bond dipole arrows.

You Try 1-4

Draw a valid Lewis structure for each of the following * you may have other valid structures drawn

1			
H	4	Ц	
1	1	i i	
_	_	À	


$$C_4H_8 \text{ (ring)} \ H \ H \ H \ - C \ - C \ - H \ H \ - C \ - C \ - H \ H \ - C \ - C \ - H \ H \ - C \ - C \ - H \ H \ - C \ - C \ - C \ - H \ - C \ - C \ - C \ - H \ - C \ - C \ - C \ - H \ - C \ - C \ - C \ - H \ - C \ - C \ - C \ - H \ - C \ - C \ - C \ - C \ - H \ - C \ - C \ - C \ - H \ - C$$

You Try 1-5

Draw two valid Lewis structure for each of the following

 $C_5H_{13}N$

C₇H₁₄ (with 5 C ring)

C₇H₁₄ (acyclic)

 $C_5H_8O_2$

tThere are many possibilities

You Try 1-6

Determine the formal charge on each of the indicated atoms.

You Try 1-7

Draw a valid Lewis structure for each of the charged molecules below.

$C_4H_{11}O^{\dagger}$	(+	on	oxygen)
------------------------	----	----	--------	---

$$C_4H_{\P}O^+$$
 (+ on carbon)

C₄H₁₀N (- on nitrogen)

C₁H₁₀N⁻ (- on carbon)